Felddatenbasierte Batteriediagnose und Lebensdauerprognose

Field data based battery diagnosis and End of Life prediction

R. Kratzing¹, T. Lehmann¹, S. Neupert², J. Kowal²

¹Fraunhofer-Institute for Transportation and Infrastructure Systems IVI, Vehicle Systems ²Technische Universität Berlin, Institut of Energy and Automation Technology, Electrical Energy Storage Technology EET

Contact: Richard Kratzing, richard.kratzing@ivi.fraunhofer.de

Motivation of the Project

- Laboratory tests do not reflect real-life application scenarios
- Criterion for end of life is the capability to carry out load cycles, instead of fixed values for C and R
- Therefore, development of methods to determine
 - the aging behaviour based on stress factors
 - aging condition without additional capacity tests
 - use behaviour for application-specific end of life prediction for lithium-ion batteries based on field data.

State of Research

- Acquisition of field data from car fleet (24 vehicles) and bus fleet (53 vehicles) with > 18 months of use
- Development, implementation and validation of a battery model and aging prediction models including prediction of buckling behaviour based on neural networks

pending: final test of the algorithms and further publication until the end of the project in March 2024

Results

Individual vehicle and fleet models based on laboratory and field data

Fleet model combines aging prediction from laboratory data and field data

Campaign/ cells	Duration/ cycles	Conditions	Reference tests
NMC-cell 11Ah (31 cells)	since 2018up to 14.000 cycles	 25 °C < T < 45 °C -2C < I < 2C 10% < dod < 100% 	every 100 cycles
NMC-cell 46Ah	since 2019up to 6.500 cycles	35°C < T < 45Y°C20% < dod < 90%	every 250 cycles resp. every 30 days
NMC battery type 1 (15 buses)	~ 1,5 years200-500 cycles per year	T = 25 °C30% < dod < 80%	2 (annually for selected buses)
NMC battery type 2 (44 buses)	~ 1,5 years200-500 cycles per year	T =25°C30% < dod < 60%	6 (annually for selected buses)

Table 1: Overview of data sources, data scope and operating conditions

 Evaluation of the estimation algorithms by means of dedicated capacity tests for individual vehicles

Figure 1: Comparison of different algorithms with reference tests

End of Life prediction

- Determination of typical operating profiles (= scenarios)
- Performance of virtual experiments (e.g. capacity test, scenarios) to determine available energy content
- → Scenario-based end of life prediction instead of universal reference value (20% capacity loss)
- → purposeful evaluation allows longer use of the battery

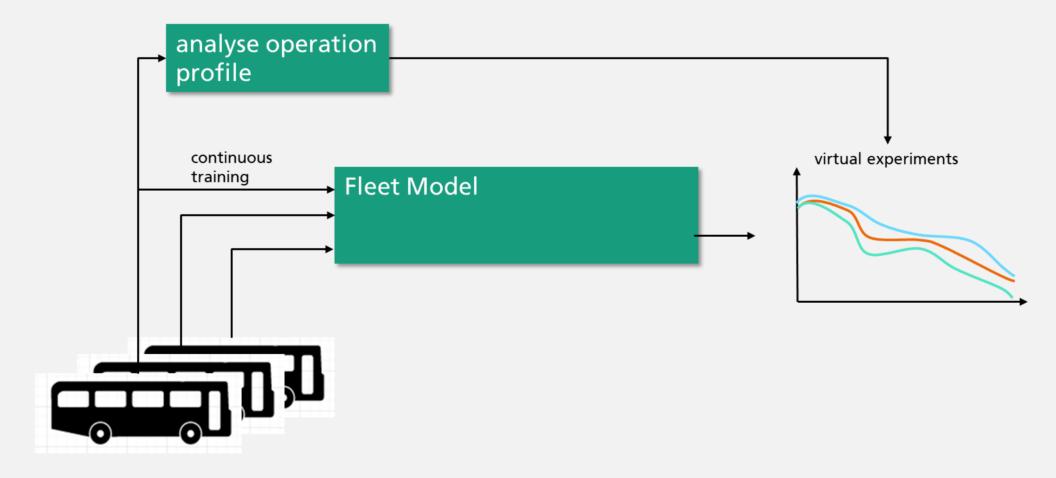


Abbildung 2: End of Life prediction using virtual experiments

Knee point prediction

- Data set with buckling behaviour from Toyota Research
- Point prediction using neural network
- Various gradients of the existing data possible
 - Tuning will be continued
- Progression prediction in progress

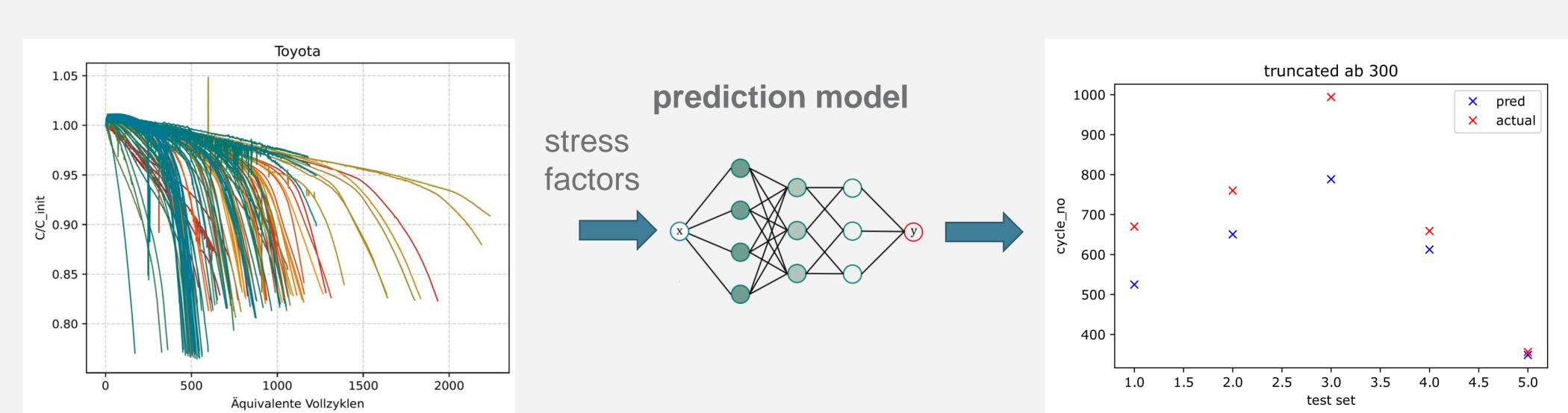


Figure 3: prediction of buckling behaviour by point prediction using a neural network

References

- IET Net Zero Week: Neupert, S.; Yao, J.; Kowal, J.: Load Cycle Design and Analysis for Energy Storage Technologies Utilising Micro-Trip Methods and Machine Learning Approaches
- Lehmann, T.; Weiß, F.: Lithium-Ion Battery Aging Analysis of an Electric Vehicle Fleet Using a Tailored Neural Network Structure, Applied Sciences, 2023.
- Kraftwerk Batterie: Neupert, S.: Load Cycle Analysis and Design of Realistic Profiles, Poster, 2023.
- Kraftwerk Batterie: Lehmann, T.; Weiß, F.: Aging diagnostics of Lithium-ion Batteries using Machine Learning and real Vehicle Fleet Data, Poster, 2023.

Acknowledgements

The presented contents are based on a project funded by the German Federal Ministry of Education and Research under the grant number 03XP0308 The authors are responsible for the contents of this publication.

